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A State-Space Approach to Optimal Level-Crossing
Prediction for Linear Gaussian Processes
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Abstract—In this article, approximations of an optimal level-
crossing predictor for a zero-mean stationary linear dynamic
system driven by Gaussian noise in state-space form are inves-
tigated. The study of this problem is motivated by the practical
implications for design of an optimal alarm system, which will
elicit the fewest false alarms for a fixed detection probability in
this context. This work introduces the use of Kalman filtering
in tandem with the optimal level-crossing prediction problem. It
is shown that there is a negligible loss in overall accuracy when
using approximations to the theoretically optimal predictor, at
the advantage of greatly reduced computational complexity.

Index Terms—Alarm systems, Approximation methods,
Kalman filtering, Level-crossing problems, Prediction methods

I. INTRODUCTION

THIS article introduces a novel approach of combining
the practical appeal of Kalman filtering with the design

of an optimal alarm system for the prediction of level-
crossing events. A comprehensive demonstration of practical
application for the design of optimal alarm systems has been
covered in the literature [1], [2], [3], [4], [5]. The background
theory for optimal alarm systems preceded this work, and was
introduced by a small subset of these authors [6], [7]. However,
the latter is by no means a comprehensive list, and illustrates
only a cross-section of the primary authors responsible for
introducing optimal alarm systems in a classical and practical
sense.

It was shown by Svensson [1] and Svensson et al. [2] that an
optimal alarm system can be constructed by finding relevant
alarm system metrics (as are used in ROC curve analysis) as
a function of a design parameter by way of an optimal alarm
condition. The optimal alarm condition is fundamentally an
alarm region or decision boundary based upon a likelihood
ratio criterion via the Neyman-Pearson lemma, as shown in [6],
[7]. This allows for the design of an optimal alarm system that
will elicit the fewest possible false alarms for a fixed detection
probability. This becomes important when considering the
numerous applications that might benefit from an intelligent
tradeoff between false alarms and missed detections.

In general, the design of optimal alarm systems demon-
strates practical potential to enhance reliability and support
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health management for space propulsion, civil aerospace ap-
plications, and other related fields. Due to the great costs, not
to mention potential dangers associated with a false alarm
due to evasive or extreme action taken as a result of false
indications, there are great opportunities for cost savings/cost
avoidance, and enhancement of overall safety. Nonetheless, the
intent of this article is to demonstrate the utility of optimal
level-crossing prediction from a more theoretical perspective.

Due to the fact that optimal alarm regions cannot be
expressed in closed form, one of the aims of this study is
to investigate approximations for the design of an optimal
alarm system. The resulting metrics can easily be compared
to competing methods that may also provide some level of
predictive capability, but have no provision for minimizing
false alarms for the prediction of level-crossing events.

There are several examples of level-crossing events to be
studied, varying from a simple one-sided case to a more com-
plicated two-sided case. The former one-sided case involves
exceedances and/or upcrossings of a single level spanning two
adjacent time points for a discrete-time process. This is the
case that has traditionally been studied in previous work and
invokes ARMA(X) prediction methods [1], [2], [5], [6], [7].
The latter two-sided case involves a level crossing event that
may span many time points and exceed upper and lower levels
symmetric about the mean of the process many times during
this timeframe.

A variant of the latter more complicated two-sided case has
been investigated by Kerr [8] and uses a Kalman filter-based
approach. The two-sided case is more practically relevant
when monitoring residuals that may be derived from the
output of other machine learning algorithms or transformed
parameters that relate to system performance. The two-sided
case is investigated here, and a Kalman filter-based approach
is used in an optimal manner relevant for the prediction of
level-crossings.

The prediction of such a level-crossing event is also very
similar to what has been established as the state of the art for
newly minted spacecraft engines, as studied in [9], however
no guarantees of optimality exist. This provides additional
practical motivation for investigating a level crossing event that
spans many time steps, moving beyond what has previously
been studied in this vein.

There is an extensive history of invoking Kalman-filter-
based approaches within the failure detection literature. A
comprehensive survey of such techniques can be found in a
book by Basseville and Nikiforov [10], which cites ground-
breaking articles by Willsky and Jones [11], and Kerr [8].
More recently, the use of the Kalman filter has been used to
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address the level-crossing prediction problem in application
to condition monitoring [12], however without any theoretical
guarantees of optimality. A competitor to the optimal alarm
system is described in [13], and uses adaptive optimal on-
line techniques in a Bayesian formulation, providing more
modeling flexibility. However, there are still considerable
computational issues with such an approach, and a well-
defined cost function is still required, even when the posterior
probability is adaptively updated.

Relevant alarm system metrics such as ones used in ROC
curve analysis can be expressed as a function of a design
parameter via an optimal alarm condition. These same metrics
will act as the basis for comparison to competing methods
to be presented in Sec. II-C. These competing methods may
provide some level of predictive capability, but have no
provision for minimizing false alarms. The optimal level-
crossing predictor uses an optimal alarm condition in order
to provide an upper bound on false alarm probability. All of
these techniques are leveraged to predict another distinctly
more critical level-crossing event (based upon an extreme
value given by the critical level, L), and may provide a viable
alternative to the use of a single level based solely upon a
decision rule as is used with methods such as CUSUM, SPRT,
GLR, etc.

However, CUSUM, SPRT, GLR, etc., as well as the optimal
level-crossing predictor are all fundamentally based upon
the application of the Neyman-Pearson lemma and resulting
decision rule. As such, they are all optimally guaranteed an
upper bound on false alarm probability for a maximal detection
probability under certain technical conditions related to the
hypotheses being tested. The primary difference between these
methods is in the characterization of the null hypotheses and
application of the resulting optimal decision rule. For the
optimal level-crossing predictor, the null hypothesis integrates
the definition of a critical event, which can be constructed such
that multiple level-crossings of an extreme value span multiple
time steps into the future, implicitly enabling a predictive
capability for alarm system design. For the other methods such
as CUSUM, SPRT, GLR, etc., null or alternate hypotheses are
constructed to target the detection of abrupt changes in model
parameters. These methods are also the one most commonly
found in the literature, e.g., [14], [8], [11], [15], [10].

Operating under the alternate paradigm, a critical event can
be constructed to emulate the adverse conditions requiring pre-
diction in the context of an extreme value level-crossing rather
than an abrupt change in model parameters. The distinction
between these two paradigms is one of the most discernable
differences in the theoretical techniques used here and in other
literature derived from extreme value theory, [1], [2], [3], [5],
[6], [7]. The use of an optimal level-crossing predictor is
naturally parameterized to allow for prediction of an event
occurring in the future. Thus, this technique should perform
well in practice for early prediction, conditioned on the use
of alarm system parameters that are well characterized by
the modeling assumptions. Overall, this article aims to more
precisely close the gap between the use of Kalman filtering and
optimal alarm systems. Although motivated by fault detection
and prediction, recognizing that the literature in this area is

quite expansive, this article aims to shed light on a segment
of the literature that has been largely overlooked.

II. METHODOLOGY

A level-crossing event is defined with a critical level, L,
that is assumed to have a fixed, static value. The level is
exceeded by some critical parameter than can be represented
by a dynamic process, and is often modeled as a zero-mean
stationary linear dynamic system driven by Gaussian noise.
Most of the theory that follows is based upon this standard
representation of the optimal level-crossing problem. As such,
it is an underlying assumption that measured or transformed
data can be fitted well to a model represented by a linear
dynamic system driven by Gaussian noise. The state-space
formulation is shown in Eqns. 1-3, demonstrating propagation
of both the state, xk ∈ Rn which is corrupted by process noise
wk ∈ Rn, and the state covariance matrix, Pk, which evolve
with the time-invariant system matrix A. The output, yk ∈ R
is univariate, and is corrupted by measurement noise vk ∈ R.

xk+1 = Axk + wk (1)
yk = Cxk + vk (2)

Pk+1 = APkA> + Q (3)

where

wk ∼ N (0,Q), Q � 0

vk ∼ N (0, R), R > 0
x0 ∼ N (µx,P0)

TABLE I
SUMMARY OF MATHEMATICAL NOTATION

Mathematical
Representation

Nomenclature

� Positive semi-definite
(•)′ Not (Set complement)
I Universe of all events
(•)> Transpose
P (•) Probability
E[•] or µ• Expected Value
•̂k+j|k E[•|y0, . . . , yk] (Conditional Expectation)
•̃k Orthonormal rotation of •k in vector space
•∗ Result of vector space orthonormal rotation in

probability or event space
N (µ,Σ) Gaussian distribution with mean µ and covariance

Σ
N (x;µ,Σ) Gaussian distribution evaluated at x with mean µ

and covariance Σ

A summary of the basic mathematical notation not defined
elsewhere is provided in Table I. There is great flexibility
in constructing a mathematical representation for the level-
crossing event, Ck. Ostensibly, the target application will drive
the definition of this event. As such, in this paper the event
of interest is shown in Eqn. 4, cf. Kerr [8] in consideration
of the motivating factors described in the introduction. This
level-crossing event represents at least one exceedance outside
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Ek+2 = {|yk+2| < L} = 1
Ek+1 = {|yk+1| < L} = 1

Ek+5 = {|yk+5| < L} = 0︸ ︷︷ ︸
Sk+5 = {⋂4

i=1 Ek+i, E
′
k+5}=1

Fig. 1. Level-Crossing Event Realization

of the threshold envelope specified by [−L,L] of the process
yk within the specified look-ahead prediction window, d.

Ck
4
=

d⋃

j=1

Sk+j =
d⋃

j=1

E′k+j = I \
d⋂

j=1

Ek+j (4)

where

Ek+j
4
= {|yk+j | < L}, ∀j ≥ 1

Sk+j
4
=

{
E′k+j j = 1⋂j−1

i=1 Ek+i, E
′
k+j ∀j > 1

Fig. 1 illustrates the relationship between subevents Sk+j

and Ek+j , when d = 5. The event Ck can be represented
as the union of disjoint subevents, Sk+j , or as the union of
overlapping subevents, E′k+j . However, due to DeMorgan’s
theorem, the latter can be expressed in a more compact fashion
via a single term when computing the probability of the overall
event. This obviates the need for use of the inclusion/exclusion
rule for the realization of all relevant terms in a probability
computation based upon the union of overlapping subevents,
E′k+j , where the number of terms would be exponential in d.
It also obviates the need for computing the probability based
upon the former union of disjoint subevents, Sk+j , where there
is no need for use of the inclusion/exclusion rule. However, the
number of terms would still be linear in d, as the probability
computation of the union of disjoint subevents is represented
by the sum of terms involving Sk+j . Thus Eqn. 5 represents

the unconditional probability of the level-crossing event in its
most compact representational form.

P (Ck) = 1−
∫ L

−L
· · ·
∫ L

−L
N (yd;µyd

,Σyd
)dyd (5)

where

yd
4
=



yk+1

...
yk+d


 , µyd

= 0d =




0
...
0




Σyd

4
=

{
CPkC> +R ∀i = j ∈ [1, . . . , d]
CPk+i,k+jC> ∀j > i ∈ [1, . . . , d]

and Pk+i,k+j
4
= Aj(Pk −PL

ss)(A
>)i + Aj−iPL

ss

Σyd
can be approximated as shown in Eqn. 6 by substitut-

ing the steady-state version of the Lyapunov equation given
previously as Eqn. 3, PL

ss, in place of Pk, which agrees with
the assumption of stationarity.

Σyd
≈
{

CPL
ssC

> +R ∀i = j ∈ [1, . . . , d]
CAj−iPL

ssC
> ∀j > i ∈ [1, . . . , d]

(6)

This approximation, while it introduces error with regards
to the probability of a level-crossing event, P (Ck) at a specific
point in time, k, is ostensibly negligible and will provide
for a great computational advantage in the design of an
alarm system. Instead of designing an alarm system for each
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time step, a single alarm system is designed for all time
steps. The approximation is based upon the limiting statistics
that are reached at steady-state, which greatly reduces the
computational burden. The steady-state assumption has not
been used in work by Antunes et al. [13], but doing so also
incurs much greater computational effort.

Theorem 1, which can be found in Sec. VII, provides the
mathematical underpinnings for the optimal alarm condition
corresponding to the level-crossing event, shown here as
Eqn. 7. Alternatively, the optimal alarm condition derived in
Theorem 1 can be expressed in terms of the subevents Ek+j ,
as shown in Eqn. 8.

P (Ck|y0, . . . , yk) ≥ Pb (7)

⇔ P (
d⋂

j=1

Ek+j |y0, . . . , yk) ≤ 1− Pb (8)

The optimal alarm condition has therefore been derived
from the use of the likelihood ratio resulting in the conditional
inequality as given in Eqn. 7. This basically says “give alarm
when the conditional probability of the event, Ck, exceeds the
level Pb.” Here, Pb represents some optimally chosen border or
threshold probability with respect to a relevant alarm system
metric. It is necessary to find the alarm regions in order to
design the alarm system. This alarm region is parameterized
by future process output predictions and covariances, which
can be derived from standard Kalman filter Eqns. 9 - 14.

ŷk|k = Cx̂k|k (9)
x̂k+1|k = Ax̂k|k (10)

x̂k+1|k+1 = x̂k+1|k + Fk+1|kεk+1 (11)

Fk+1|k
4
= Pk+1|kC>(CPk+1|kC> +R)−1 (12)

Pk+1|k = APk|kA> + Q (13)
Pk+1|k+1 = Pk+1|k − Fk+1|kCPk+1|k (14)

where

x̂k|k
4
= E[xk|y0, . . . , yk]

Pk|k
4
= E[(xk − x̂k|k)(xk − x̂k|k)T |y0, . . . , yk]

εk
4
= yk −Cx̂k|k−1

Relevant predictions, covariances and cross-covariances are
given below as Eqns. 15- 19, respectively.

ŷk+j|k = CAjx̂k+j|k (15)

Pk+j|k = Aj(Pk|k −PL
ss)(A

>)j + PL
ss (16)

≈ Aj(P̂R
ss −PL

ss)(A
>)j + PL

ss (17)
Pk+i,k+j|k = Aj(Pk|k −PL

ss)(A
>)i + Aj−iPL

ss(18)

≈ Aj(P̂R
ss −PL

ss)(A
>)i + Aj−iPL

ss (19)
P̂R
ss = PR

ss − FssCPR
ss (20)

Fss = PR
ssC

>(CPR
ssC

> +R)−1 (21)

PR
ss is the combined steady-state version of Eqns. 13 and

14 given previously, or the discrete algebraic Riccati equation,
and P̂R

ss is the steady-state a posteriori covariance matrix
given in Eqn. 20. Eqn. 21 is also used in Eqn. 20, which
is the steady-state version of the Kalman gain from Eqn. 12.

The approximations shown in Eqns. 17 and 19 will provide
for a great computational advantage in design of the optimal
alarm system and its corresponding approximations for reasons
stated previously. Due to the approximation of Pk|k with P̂R

ss

shown in these equations, the Kalman filter will be suboptimal,
as cited by Lewis [16]. However, the assumption of stationarity
is required for the design of an optimal alarm system as defined
by Theorem 1, and holds here as well.

A more formal representation of the optimal alarm region
is shown in Eqn. 22, which essentially defines a sublevel set
of g(ŷd)

4
=P (

⋂d
j=1Ek+j |y0, . . . , yk) as a function of ŷd.

Ak
4
= {

d⋂

i=1

ŷk+i|k : P (Ck|y0, . . . , yk) ≥ Pb} (22)

4
= {

d⋂

i=1

ŷk+i|k : P (
d⋂

j=1

Ek+j |y0, . . . , yk) ≤ 1− Pb}

Eqns. 23-24 give the multivariate normal probability com-
putation to be performed via numerical integration, required
for enabling the optimal alarm condition.

P (
d⋂

j=1

Ek+j |y0, . . . , yk) =
∫ L

−L
· · ·
∫ L

−L
N (yd; ŷd, Σ̂yd

)dyd

(23)

=
∫ L−ŷk+1|k

−L−ŷk+1|k

· · ·
∫ L−ŷk+d|k

−L−ŷk+d|k

N (yd; 0d, Σ̂yd
)dyd (24)

where

ŷd
4
= E[yd|y0, . . . , yk] =



ŷk+1|k

...
ŷk+d|k




Σ̂yd

4
=

{
Vk+i|k ∀i = j ∈ [1, . . . , d]

CPk+i,k+j|kC> ∀i 6= j ∈ [1, . . . , d]

Vk+i|k
4
= CPk+i|kC> +R

The feasible region for values of Pb can easily be de-
termined by applying an intermediate value theorem from
calculus which provides sufficient conditions for finding a
level set solution. The sufficient conditions are shown as Eqns.
25-26, and the resulting level set is shown as Eqn. 27.

g(0d) ≥ 1− Pb (25)
lim

|ŷd|\ŷk+j|k→∞
g(ŷd) < 1− Pb, ∀j ∈ [1, . . . , d] (26)

LA
4
={

d⋂

j=1

ŷk+j|k : g(ŷd) = 1− Pb} (27)
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The notation that represents the limiting condition shown in
Eqn. 26 is |ŷd|\ ŷk+j|k →∞, and is meant to indicate that all
elements of ŷd other than ŷk+j|k approach ±∞. Application
of this condition yields Pb < 1, which is true by definition,
and application of the sufficient condition shown in Eqn. 25
yields Pb ≥ 1 − g(0d). Thus the feasible region for Pb is
Pb ∈ [1− g(0d), 1].

It is not possible to obtain a closed-form representation of
the parametrization for the optimal alarm region shown in Eqn.
22. As such, a Monte Carlo approach must be used. This
allows the ROC curve statistics to be estimated empirically
with observational and truth data generated from the existing
model and corresponding simulations of level-crossing events.

However, with the aid of two distinct approximations, ROC
curve statistics can be generated by numerically integrating ex-
pressions for the computation of relevant multivariate normal
probabilities. These multivariate probability computations are
performed by using an adaptation of Genz’s algorithm [17],
which is based upon a robust and computationally efficient
technique designed to be used for integrations in multiple
dimensions for multivariate normal distributions. This provides
a tool necessary for the design of approximations to an optimal
alarm system, and also other failure detection algorithms such
as the one most often used by Kerr [18], who specifically cites
issues with the computation of these types of integrals. As
such, computationally intensive simulation runs using Monte-
Carlo empirical estimation can be avoided.

A. Root-finding Approximation

The optimal alarm region, Ak, can be approximated by
the alarm region specified by

⋃d
j=1 ΩAj . Fundamentally, the

approximation is constructed by solving for asymptotic bounds
on the exact alarm region. By using asymptotes, a geometrical
approximation is implicitly formed with a hyperbox around
the alarm region. Simple 2-dimensional examples of such
hyperboxes for various values of L, and Pb are shown in
Fig. 2. There is visual evidence that limiting effects for this
approximation exist, as both L and Pb approach the extremities
of their feasible domains. These effects will be touched on
briefly later in the results section, but will be investigated in
earnest in a sequel article.

Mathematically, the approximation is formed by solving a
root-finding problem which yield bounding asymptotes. The
root-finding problem is posed by first taking the limit as each
dimension of Eqn. 22 approaches 0, other than the one for
which the asymptote is being derived. Eqn. 28 expresses this
limiting condition as a function of the dimension of interest.

f(ŷk+j|k)
4
= lim

ŷd\ŷk+j|k→0
P (

d⋂

j=1

Ek+j |y0, . . . , yk) (28)

Having defined f(ŷk+j|k), it is now possible to express ΩAj

in Eqns. 29-30.

ΩAj
= {ŷk+j|k : f(ŷk+j|k) ≤ 1− Pb} (29)
= {|ŷk+j|k| ≥ LAj

} (30)

Fig. 2. Root-finding approximations for optimal alarm region

where the root-finding problem is given by numerically
solving Eqn. 31.

LAj

4
={|ŷk+j|k| : f(ŷk+j|k) = 1− Pb} (31)

Thus the root-finding approximation to the optimal alarm
region is given by

⋃d
j=1 ΩAj ≈ Ak. Note that the function f

incorporates all elements of the covariance matrix Σ̂yd
when

computing the asymptotes, just as when constructing the sub-
level set for the the exact optimal alarm region. Furthermore,
the feasible region for Pb is identical to the sublevel set of the
exact optimal alarm region, Pb ∈ [1−g(0d), 1] ≡ [1−f(0), 1]
by using a similar argument and set of sufficient conditions,
as shown in Eqns. 32-33 below.

f(0) ≥ 1− Pb (32)
lim

|ŷk+j|k|→∞
f(ŷk+j|k) < 1− Pb (33)

However, there is one primary difference between this
approximation and exact alarm region. The conditional mean,
ŷd, associated with the asymptotic approximation is parame-
terized only by the corresponding dimension of the conditional
mean, ŷk+j|k, whereas the exact optimal alarm region uses all
dimensions of the distribution simultaneously.

It is possible to generate formulae for the true and false
positive rates as a function of LAj

by appealing to Eqns. 34-
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35, where in place of Ak its approximation
⋃d
j=1 ΩAj

may be
used.

True positive rate:

Pd = P (Ck|Ak) =
P (Ck, Ak)
P (Ak)

(34)

False positive rate:

Pfa = P (Ak|C
′

k) =
P (C

′

k, Ak)
P (C ′

k)
(35)

=
P (Ak)− P (Ck, Ak)

1− P (Ck)

The formula for P (Ck) has already been introduced in Eqn.
5, and holds regardless of the alarm system approximation be-
ing used. Thus, only the additional expressions for P (Ck, Ak)
and P (Ak) given in Eqns. 36-37 are necessary for computing
Pd and Pfa. These equations use Pbcrit

4
=1−g(0d) = 1−f(0),

and are also implicitly expressed as a function of the design
parameter, Pb, as a consequence of Eqn. 31. Note also that the
off-diagonal blocks of the covariance matrix Σz are equivalent
to Σ̂ŷd

as a consequence of the projection theorem.

P (Ak) =
{
P (
⋃d
j=1 ΩAj

) Pb > Pbcrit

1 Pb = Pbcrit

(36)

=
{

1− P (
⋂d
j=1 Ω′Aj

) Pb > Pbcrit

1 Pb = Pbcrit

P (Ck, Ak) =
{
P (Ck)− P (A′k) + P (C ′k, A

′
k) Pb > Pbcrit

P (Ck) Pb = Pbcrit

(37)
where

P (A′k) = P (
d⋂

j=1

Ω′Aj
) = P (

d⋂

j=1

|ŷk+j|k| < LAj
)

=
∫ LA1

−LA1

· · ·
∫ LAd

−LAd

N (ŷd;µyd
, Σ̂ŷd

)dyd

and

Σ̂ŷd

4
= Σyd

− Σ̂yd

= O(PL
ss − P̂R

ss)O
>

O
4
=




CA
...

CAd




Furthermore,

P (C ′k, A
′
k) = P (

d⋂

j=1

Ek+j ,

d⋂

j=1

Ω′Aj
)

=
∫ L

−L
· · ·
∫ L

−L

∫ LA1

−LA1

· · ·
∫ LAd

−LAd

N (z;µz,Σz)dz

where

z
4
=

[
yd
ŷd

]

µz
4
=

[
µyd

µyd

]

Σz
4
=

[
Σyd

Σ̂ŷd

Σ̂ŷd
Σ̂ŷd

]

B. Closed-form Approximation

The optimal alarm region, Ak, can also be approximated by
an alarm region specified by

⋃d
j=1A

j
k, with a successive ap-

proximation on Ajk; Ajk is defined in Eqn. 38. Fundamentally,
the approximation can be constructed in the same fashion as
the root-finding method, by solving for asymptotic bounds on
the exact alarm region.

Ajk = {ŷk+j|k : P (Ek+j |y0, . . . , yk) ≤ 1− Pb} (38)

A containment relationship between the exact optimal alarm
region and the union of approximate subregions

⋃d
j=1A

j
k ⊆

Ak can easily be shown with a linear transformation of the
conditionally defined Gaussian vector yd to a vector of inde-
pendent variables. The integrand of Eqn. 24 is a multivariate
Gaussian density whose conditional covariance matrix is given
by Σ̂yd

. The orthonormal decomposition of this covariance
matrix and density of the corresponding transformed vector
ỹd are shown in Eqns. 39 - 41.

ỹd = Λyd (39)
Σ̂yd

= ΛΓΛ> (40)

N (yd; 0d, Σ̂yd
) = N (ỹd; 0d,Γ) (41)

Here, the elements of ỹd are independent, and thus Γ is
diagonal. As such, geometric containment easily follows when
considering a revised expression for Ak and

⋃d
j=1A

j
k. Thus,

the latter approximation to the exact alarm region can be
rewritten in the transformed probability space as shown in Eqn.
42. Note that this expression does not change significantly
from what was given in Eqn. 38.

d⋃

j=1

Ajk =
d⋃

j=1

{ŷk+j|k : P (E∗k+j |ỹ0, . . . , ỹk) ≤ 1− P ∗b } (42)

The exact alarm region Ak can be rewritten in the trans-
formed probability space as shown in Eqn. 43, however the
expression changes significantly, and in such a manner to allow
for direct comparison to Eqn. 42.

Ak = {
d⋂

i=1

ŷk+i|k : P (
d⋂

j=1

E∗k+j |ỹ0, . . . , ỹk) ≤ 1− P ∗b }

= {
d⋂

i=1

ŷk+i|k :
d∏

j=1

P (E∗k+j |ỹ0, . . . , ỹk) ≤ 1− P ∗b } (43)
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Because containment in this probability space is invariant
under orthonormal rotations, it follows from Eqns. 42- 43,
that

⋃d
j=1A

j
k ⊆ Ak, so that the approximate alarm region

is a proper subset of the exact alarm region. Fig. 3 provides
illustrative evidence of this containment in the transformed
probability space when d = 2. Here, the union of the light and
dark colored sections represents Ak (formula shown below)
and the dark colored section represents the approximation A1

k∪
A2
k.

Ak = {(ỹk+1|k, ỹk+2|k) : P (E∗k+1|ỹ0, . . . , ỹk) ·
P (E∗k+2|ỹ0, . . . , ỹk) ≤ 1− P ∗b }

Fig. 3. Containment of the approximation by exact alarm region in
transformed probability space

A successive approximation is required in order to obtain
a closed-form representation and parametrization of the alarm
region without having to resort to root-finding required for
solving P (Ek+j |y0, . . . , yk) ≤ 1− Pb, which is equivalent to
P (|yk+j | > L|y0, . . . , yk) ≥ Pb. This second approximation
is given by Eqn. 44, which breaks this condition containing
an absolute value into constitutive inequalities.

Ai,jk = {ŷk+j|k : P (Eik+j

′|y0, . . . , yk) ≥ Pb} (44)

where

i ∈ B ≡ {`, υ} = {lower limit, upper limit}
Eυk+j = {yk+j < L}
E`k+j = {yk+j > −L}

Thus P (Eυk+j
′|y0, . . . , yk) + P (E`k+j

′|y0, . . . , yk) ≥ Pb is
approximated by two distinct inequalities given by the union
of P (Eυk+j

′|y0, . . . , yk) ≥ Pb and P (E`k+j

′|y0, . . . , yk) ≥ Pb.
This subsequent approximation can easily be visualized in Fig.
4. The union of the light and dark colored sections shown in
Fig. 4, represents A1

k. Thus the dark colored section alone from
Fig. 4 is a subset of this area, such that Aυ,1k ∪A

`,1
k ⊆ A1

k. If
Fig. 4 is replicated for j ∈ [1, . . . , d], then it becomes clear
that more generally Eqn. 45 holds, which summarizes all of
the containment relationships for the approximations covered
in this subsection.

d⋃

j=1

⋃

i∈B
Ai,jk ⊆

d⋃

j=1

Ajk ⊆ Ak (45)

Fig. 4. Closed-form approximation in probability space

By using this successive approximation, the alarm region
can now be represented in “closed-form,” as shown in Eqn.
46 below.

d⋃

j=1

⋃

i∈B
Ai,jk =

d⋃

j=1

|ŷk+j|k| ≥ L+
√
Vk+j|kΦ−1(Pb) ≡ LAj

(46)
Φ−1(·) represents the inverse cumulative normal standard

distribution function, and LAj represents the limits of inte-
gration, ∀j ∈ [1, . . . , d]. The LAj values can now been re-
defined to replace the integration limits used for the root-
finding method in Eqns. 34 - 37. As such, these same equations
are valid for computing Pd and Pfa in order to construct an
ROC curve using this “closed-form” approximation as well.
However, in place of Ak when using these equations, the
approximation

⋃d
j=1

⋃
i∈B A

i,j
k is used.

The domain of feasibility for this approximation now
changes, and Pbcrit takes on a new value, which differs from
identical values of Pbcrit = 1 − g(0d) and Pbcrit = 1 − f(0)
corresponding to the feasibility regions for the optimal alarm
region and the root-finding approximation, respectively. A
derivation for the new value of Pbcrit

is provided in Eqns.
47-51 below. The derivation is based upon the premise that
LAj > 0, where the last step from Eqn. 50 to 51 uses Lemmas
2-5 which can be found in Sec. VII, and the fact that R > 0.

LAj > 0 ∀j ∈ [1, . . . , d] (47)

L+
√
Vk+j|kΦ−1(Pb) > 0 ∀j ∈ [1, . . . , d] (48)

d⋂

j=1

Pb > Φ

(
−L√
Vk+j|k

)
4
=Pbj

(49)

Pbcrit > max
j
Pbj (50)

= Φ

(
−L√
Vk+d|k

)
= Pbd

(51)
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Again, by using asymptotes a geometrical approximation is
implicitly formed with a hyperbox around the alarm region. As
before, simple 2-dimensional examples of such hyperboxes for
various values of L and Pb are shown in Fig. 5. Furthermore,
just as for the root-finding approximation, visual evidence that
limiting effects for this approximation also exist, as both L
and Pb approach the extremities of their feasible domains.
Note that both the approximation represented by Fig. 3 and
the successive approximation represented by Fig. 4 have been
applied to yield the vector space result shown in Fig. 5. Both
Figs. 3 and 5 have been illustrated for the case when d = 2.

Fig. 5. Closed-form approximations for optimal alarm region

Due to the containment relationship labeled Eqn. 45, quali-
tative arguments for the under-reporting of Pd and Pfa can
be made for this approximation. A less aggressive, more
optimistic strategy will result in comparison to the exact
optimal method. It is unclear if this approximation will be
more or less accurate than the previous root-finding approx-
imation. However, the off-diagonal elements of the covari-
ance matrix Σ̂yd

are not used for computing the asymptotes
of this “closed-form” approximation. Recall that the root-
finding method incorporates all elements of the covariance
matrix when computing the asymptotes. Yet both methods use
asymptotic approximations which are parameterized only by
the corresponding dimension of the conditional mean, ŷk+j|k.

As is apparent intuitively from Figs. 2 and 5, Ajk ⊆ ΩAj ,
thus

⋃d
j=1A

j
k ⊆

⋃d
j=1 ΩAj

. It is clear from visual comparison
of these figures that this containment relationship exists be-

tween the root-finding and “closed-form” approximations. For
a mathematical proof of this containment, recall Eqns. 29-30
for ΩAj

, shown again below, and compare them to Eqn. 38
for Ajk, also shown again below.

ΩAj
= {ŷk+j|k : f(ŷk+j|k) ≤ 1− Pb}
= {|ŷk+j|k| ≥ LAj

}
Ajk = {ŷk+j|k : P (Ek+j |y0, . . . , yk) ≤ 1− Pb}

Examining the regions of integration for f(ŷk+j|k) and
P (Ek+j |y0, . . . , yk), as shown in Eqns. 52-56 below, it is
evident that a clear containment relationship exists.

f(ŷk+j|k) = lim
ŷd\ŷk+j|k→0

P (
d⋂

j=1

Ek+j |y0, . . . , yk) (52)

=
∫

DΩ

N (yd; ŷd, Σ̂yd
)dyd (53)

=
∫ L

−L
· · ·
∫ L−ŷk+j|k

−L−ŷk+j|k

· · ·
∫ L

−L
N (yd; ŷd, Σ̂yd

)dyd (54)

P (Ek+j |y0, . . . , yk) =
∫

DA

N (yd; ŷd, Σ̂yd
)dyd (55)

=
∫ ∞

−∞
· · ·
∫ L−ŷk+j|k

−L−ŷk+j|k

· · ·
∫ ∞

−∞
N (yd; ŷd, Σ̂yd

)dyd (56)

where

X = {[−L,L]} ⊂ R
DΩ = {Xd−1 × [−L− ŷk+j|k, L− ŷk+j|k]}
DA = {Rd−1 × [−L− ŷk+j|k, L− ŷk+j|k]}

It is clear that DΩ ⊆ DA due to the fact that Xd−1 ⊆ Rd−1.
As such, f(ŷk+j|k) ≤ P (Ek+j |y0, . . . , yk) easily follows due
to the fact that both expressions share a common integrand.
It is therefore evident that the original claim Ajk ⊆ ΩAj

, and
thus

⋃d
j=1A

j
k ⊆

⋃d
j=1 ΩAj

is mathematically sound.
According to this newly derived containment relationship,

and by again using qualitative arguments, it is clear that the
root-finding approximation will be more aggressive, and less
optimistic than the closed form approximation. However, there
is no containment relationship that can be established between
the root-finding method and the exact optimal alarm region as
could be performed for the closed form approximation. As
such, even though the root-finding method incorporates all
elements of the covariance matrix when computing its asymp-
totes, this approximation strategy may be overly aggressive
and overshoot the performance of the exact optimal method
under certain circumstances. This mathematical intuition will
be supported by demonstrating this effect with examples later
in the results section.
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C. Redline and Predictive Alarm Systems

Two baseline “redline” and “predictive” alarm systems will
be compared to the optimal alarm system and its approxima-
tions. All methods will attempt to predict the level-crossing
event defined by Eqn. 4. The redline alarm system attempts to
define an envelope, [−LA, LA], outside of which an alarm will
be triggered to forewarn of the impending level-crossing event.
The probabilities necessary to compute Pd and Pfa based upon
Eqns. 34-35 for this alarm system are provided in Eqns. 57-60,
where a redefinition of Ak = {|yk| > LA} now holds, such
that the alarm is based only on the current process value.

P (Ak) = P (|yk| > LA) (57)

= 2Φ


 −LA√

CPL
ssC> +R


 (58)

P (Ck, Ak) = P (Ck)− P (A′k) + P (C ′k, A
′
k) (59)

P (C ′k, A
′
k) =

∫ LA

−LA

∫ L

−L
· · ·
∫ L

−L
N (z;µz,Σz)dz (60)

where

z
4
=

[
yk
yd

]

µz
4
=

[
µyk

µyd

]
= 0d+1

Σz ≈
{

CPL
ssC

> +R ∀i = j ∈ [0, . . . , d]
CAj−iPL

ssC
> ∀j > i ∈ [0, . . . , d]

The “redline” alarm system is a simple alarm level crossing
used to predict a second more critical level-crossing. In this
case two levels are used, L as the critical threshold, and
LA as the design threshold. The “predictive” alarm system
incorporates the use of predicted future process values, and
defines the same envelope, [−LA, LA], outside of which an
alarm will be triggered to forewarn of the impending level-
crossing event. However, the alarm definition differs from
the redline method, such that Ak = {|ŷk+d|k| > LA}. The
predicted future process value ŷk+d|k is found from standard
Kalman filter Eqn. 15. The probabilities necessary to compute
Pd and Pfa based upon Eqns. 34-35 for this alarm system are
provided in Eqns. 61-64.

P (Ak) = P (|ŷk+d|k| > LA) (61)

= 2Φ
(−LA√

λa

)
(62)

P (Ck, Ak) = P (Ck)− P (A′k) + P (C ′k, A
′
k) (63)

P (C ′k, A
′
k) =

∫ L

−L
· · ·
∫ L

−L

∫ LA

−LA

N (z;µz,Σz)dz (64)

where

z
4
=

[
yd

ŷk+d|k

]

µz
4
=

[
µyd

µŷk+d|k

]
= 0d+1

Σz
4
=

[
Σyd

Λ>a
Λa λa

]

λa = CAd(PL
ss − P̂R

ss)(A
>)dC>

Λa = CAd(PL
ss − P̂R

ss)O
>

Note that λa and Λa have been derived with the aid of the
projection theorem. All of the alarm systems described thus
far will be compared using the area under the ROC curve
(AUC). This provides a performance metric that characterizes
the ability of each alarm system to accurately predict the
level-crossing event. More precisely, it quantifies the Mann-
Whitney-Wilcoxon U test statistic, which is equivalent to
the probability of correctly ranking two randomly selected
data points, one belonging to the level-crossing event class,
the other not. The AUC has been deemed as a theoretically
valid metric for model selection and algorithmic comparison
[19]. The parameters of interest are LA for the redline and
predictive methods, and Pb for the optimal alarm system
and its approximations. Results will follow in the subsequent
section.

III. EXAMPLE

The example to be used for presentation of the results has
no specific application, but is generic and based upon the same
example used by Svensson et al. [2]. The model parameters
are provided in Eqns. 65-68.

A =
[

0 1
−0.9 1.8

]
(65)

C =
[

0.5 1
]

(66)

Q =
[

0 0
0 1

]
(67)

R = 0.08 (68)

Unless otherwise stated, all cases to be compared will use a
threshold of L = 16 while varying d, or a prediction window
of d = 5 while varying L.

IV. RESULTS & DISCUSSION

A comparison of the AUC for all alarm systems for a
prediction window of d = 5 while varying L ∈ [2.89, 17.83]
is shown in Fig. 6.

It is very clear that the optimal alarm system and its approx-
imations outperform the redline and predictive methods, over
the entire domain of values shown for L, as expected. Another
important point to note is that the closed form and root-finding
methods approximate the exact optimal performance quite well
over most of the domain of values shown for L. However, as
L → 0, the approximation breaks down as evidenced by the
notable divergence of AUC values. More careful analysis of
the reasons for this divergence, including its relation to the
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Fig. 6. AUC for all alarm systems a function of critical threshold, L

design parameter Pb will be presented subsequently. Table II
provides a summary of the empirically generated timing tests
which illustrate both off-line design-time and on-line run-time
computational complexity.

TABLE II
EMPIRICAL ANALYSIS OF COMPUTATIONAL COMPLEXITY

Mean Design-Time Mean Run-Time
Optimal 81 min 9.5 msec

Closed-form 48.5 sec 0.15 msec
Root-finding 57.3 sec 0.12 msec

The second column of Table II includes the mean design
time of both the redline and predictive alarm systems as well as
the optimal system or its approximations across all values of L.
Clearly, there is an order of magnitude greater computational
burden by using the simulation-based method of designing
alarm systems. Also, as expected the mean design-time for
the root-finding approximation exceeds that of the closed-form
approximation. As is clear by Fig. 6, there is no great loss
in accuracy by using these approximations except for small
values of L, where there is a perceptible, but perhaps still
negligible loss.

The third column of Table II provides the mean run-time
across all values of L, where it is evident again that the
computational requirements of the optimal alarm condition
exceed those of its approximations. In this case, the approxi-
mations involve only the time for limit checking of the type
governed by Eqn. 46. Thus the actual time for root-finding is
not included in the reported time for that approximation as
shown in Table II, which might account for the fact that it is
on par with the time for the closed form approximation. The
mean run-time for checking the exact optimal alarm condition
is based upon computing Eqns. 23-24, which naturally requires

more time than a simple limit check.

Fig. 7. AUC for all alarm systems as a function of prediction window, d

It is also of interest to investigate the case when using a
fixed threshold of L = 16 while varying d ∈ [2, . . . , 24]. A
comparison of the AUC for all alarm systems for this case
is shown in Fig. 7. As is clear from Fig. 7 and corroborated
by Fig. 6, the optimal alarm system and its approximations
outperform the redline and predictive methods as before, again
over the entire domain of values shown for d. Furthermore, as
the prediction window increases, the predictive performance
as characterized by the AUC decreases for all alarm systems,
as is to be expected. A more detailed study on the limiting
effects of AUC as d → ∞ will be conducted in a sequel
article. Due to the use of a modestly large fixed threshold of
L = 16 however, there are no deleterious effects as a result
of using approximations to the optimal alarm system as were
found when investigating the case when varying L to small
values.

Characterization of complexity as d increases is also of
interest. For the most part, the results are very similar to what
was presented in Table II for the case in which a prediction
window of d = 5 was used while varying L. Specifically, the
mean design time for the exact optimal alarm system (along
with redline and predictive alarm systems) was on par with
what was shown in Table II (74 min in lieu of 81 min).
However, the run-time in this case increases linearly as shown
in Fig. 8.

As the prediction window increases, the runtime for check-
ing the exact optimal alarm condition based upon computing
Eqns. 23-24 naturally requires more time for larger prediction
horizons. A key advantage in using approximations can there-
fore be realized. For both the closed form and root finding
approximations, the mean runtime is exactly on par with what
was presented in Table II for the case in which a prediction
window of d = 5 was used while varying L (averaging 0.11
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Fig. 9. ROC Curves and supporting statistics for all alarm systems, demonstrating negligible loss in accuracy for both approximations, and superiority of
root-finding approximation over closed-form approximation

Fig. 8. Empirical run-time complexity as a function of prediction window

msec). This is primarily due to the fact that, again, runtime
for the approximations involve only limit checking of the type
governed by Eqn. 46.

As for the design time of the approximations, they too
exhibit similar characteristics to what was presented and
discussed in conjunction with Table II. Specifically, there is a
general upward trend of the design time (which again include
design times for both the redline and predictive alarm systems)
as d increases. The mean design times are moderately higher
than what was presented in Table II (111 sec in lieu of 44.2
sec for the closed-form approximation and 129 sec in lieu of
55.2 sec for the root-finding approximation).

Recall the notable divergence in AUC values between the
exact and optimal alarm approximations, which break down

as L → 0, shown in Fig. 6. Insight for the origins of this
divergence may be derived from examining a candidate ROC
curve corresponding to a small value of L. In Fig. 9, it can
be visually discerned how both approximations break down as
related to the design parameter Pb for a small value of L ≈ 4
compared to a larger value of L ≈ 10.

The topmost panels of the figure illustrate ROC curves
corresponding to the different values of L. For the optimal
alarm system shown in the top left panel, the two approx-
imations yield ROC curves that are close but not identical
to the exact optimal result when L ≈ 4. On the top right
panel when L ≈ 10, the ROC curve approximations appear
to be much closer than on the top left panel where L ≈ 4.
This substantiates a previous observation made from Fig. 6,
that as L decreases, the approximation loses its accuracy.
Furthermore, from the previous section, Figs. 2 and 5 showed
the optimal alarm regions and their approximations to provide
further evidence of this loss of accuracy as L decreases. Those
figures were based upon the same example used to generate
the results presented in this section.

Further insight can be gained by inspecting the bottom two
panels of Fig. 9 as well. Note that the bottom panels show
the missed detection and false positive rates as a function
of Pb. The complement of the former is the true positive
rate, which along with the false positive rate, is used to
construct the ROC curves shown on the top panels. It is
evident that the closed form approximations to the optimal
alarm system yield true and false positive rates that are
systematically underreported for both values of L shown.
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This corroborates the mathematical observation made from
the previous section based upon the containment relationship
of the closed form approximation to the exact optimal alarm
region,

⋃d
j=1

⋃
i∈B A

i,j
k ⊆ ⋃dj=1A

j
k ⊆ Ak. For the smaller

value of L ≈ 4, this underreporting of the true and false
positive rates is even more striking than for the larger value
of L ≈ 10.

Furthermore, the root finding approximations to the optimal
alarm system yield true and false positive rates that are
overreported for both values of L shown. This is much more
clear for the smaller value of L ≈ 4 than for the larger value
of L ≈ 10. Hence, again this corroborates an inference made
from mathematical observations made in the previous section.
Recall the containment relationship between the root finding
and closed form approximation to the exact optimal alarm
region

⋃d
j=1A

j
k ⊆

⋃d
j=1 ΩAj . It was suggested that the root

finding approximation strategy may be overly aggressive and
overshoot the performance of the exact optimal method under
certain circumstances. This is clear for the smaller value of
L ≈ 4.

There is one last important note about the root finding
approximations that is evident in the bottom two panels of
Fig. 9. The feasible domain of values for Pb is identical to
the exact optimal alarm region of feasibility, which was also
proven mathematically in the previous section. The same is not
true for the closed form approximation, where the region of
feasibility is clearly different, and drastically so for the smaller
value of L ≈ 4.

V. CONCLUSIONS & FUTURE WORK

In this article a novel state-space approach to the optimal
alarm systems literature has been introduced, which con-
tributes to the Kalman filter-based fault detection literature
from a different theoretical angle. In doing so, it has been
demonstrated that there is a negligible loss in overall accuracy
when using approximations to the theoretically optimal predic-
tor for a stationary linear Gaussian process, at the advantage
of greatly reduced computational complexity. The negligibility
of the loss in accuracy was demonstrated by comparing
approximations to the optimal level-crossing predictor to two
competing methods which were clearly outperformed over var-
ious domains for both L and d. However, care should be taken
when designing alarm systems for which level-crossing events
are defined with small values of L. Specifically, when using
approximations, alarm system design should be governed both
by ROC curve analysis as well as supporting false positive or
missed detection rate statistics parameterized by the design
parameter Pb.

In future work, the limiting effects of AUC for the closed-
form approximation introduced in this article will be in-
vestigated. Specifically, limiting values for relevant statistics
as L, R, and d approach the extremities of their feasible
domains will be examined. Doing so will help to facilitate
a new and broader context for the design of an optimal alarm
system related to important engineering design parameters.
Furthermore, control theoretic implications and ramifications
of using the Kalman filter in tandem with optimal alarm theory

that naturally follow will be investigated. Here it will also
be possible to gain further insight into important engineering
design considerations for both the analysis and synthesis of
algorithms used for mitigation of potential adverse events from
a practical standpoint. Relaxing some of the inherent assump-
tions made in this article to the point where non-parametric
methods such as Gaussian process regression and particle
filtering are accessible may also provide a natural vehicle
for the extension of optimal alarm theory to other machine
learning research domains. Finally, extension of this work
to systems containing both multivariate inputs and outputs is
important, and has practical appeal to the field of data mining.
As such, scalability and complexity will remain important
considerations.
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VII. THEOREMS AND LEMMAS

Theorem 1: From Eqns. 1-3 it is clear that successive output
values of the stationary stochastic process, yk admit a well-
defined jointly Gaussian probability density function. Also, the
level-crossing event, Ck, defined through Eqn. 4, represents
at least one exceedance outside of the threshold envelope
specified by [−L,L] of the process yk. Then the optimal level-
crossing predictor can be written as P (Ck|y0, . . . , yk) ≥ Pb,
where the condition for optimality is as specified and defined
by the use of the likelihood ratio criterion in Eqn. 69 as a
result of the Neyman-Pearson Lemma, shown by DeMaré [6],
and more explicitly by Lindgren [7],[20].

p(y0, . . . , yk|C
′

k)
p(y0, . . . , yk|Ck)

≤ λ (69)

Proof: Using Lemma 11, we can rewrite Eqn. 69 as
follows:

1which curiously appears very much like Bayes’ rule, but can be distin-
guished from it due to the use of both probabilities and density functions.
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p(y0, . . . , yk|C
′

k)
p(y0, . . . , yk|Ck)

≤ λ

P (C
′
k|y0,...,yk)(((((p(y0,...,yk)

P (C
′
k)

P (Ck|y0,...,yk)(((((p(y0,...,yk)
P (Ck)

≤ λ

P (C
′

k|y0, . . . , yk)P (Ck)
P (Ck|y0, . . . , yk)P (C ′

k)
≤ λ

However, due to the assumption of stationarity of the
process, the size of the alarm region, P (Ck), associated with
the uniformly most powerful test of the hypothesis H0 is by
definition a constant value. The hypothesis being tested in this
case is of the level-crossing event, Ck. Due to the size of alarm
region being fixed, we can define new constants as shown
below.

1− P (Ck|y0, . . . , yk)
P (Ck|y0, . . . , yk)

≤ λ
P (C

′

k)
P (Ck)

4
=γ

P (Ck|y0, . . . , yk) ≥ 1
1 + γ

4
=Pb

⇔ P (Ck|y0, . . . , yk) ≥ Pb

Lemma 1:

p(y0, . . . , yk|Ck) =
P (Ck|y0, . . . , yk)p(y0, . . . , yk)

P (Ck)
(70)

Proof:

p(y0, . . . , yk|Ck)
4
=

∫
· · ·
∫

ΩC
p(y0, . . . , yk+d)dyd
P (Ck)

=

∫
· · ·
∫

ΩC
p(y0, . . . , yk+d)dyd

p(y0, . . . , yk)

· p(y0, . . . , yk)
P (Ck)

=
P (Ck|y0, . . . , yk)p(y0, . . . , yk)

P (Ck)

where by definition P (Ck|y0, . . . , yk)
4
=

∫
· · ·
∫

ΩC

p(yk+1, . . . , yk+d|y0, . . . , yk)dyd

=

∫
· · ·
∫

ΩC
p(y0, . . . , yk+d)dyd

p(y0, . . . , yk)

and ΩC = {yd ∈ Rd : Ck
4
=

d⋃

j=1

Sk+j}

Lemma 2:
Pbd

= max
j
Pbj

m
Vk+j+1|k > Vk+j|k, ∀j ∈ [1, . . . , d]

Proof: The posited claim is true iff

Pb1 < . . . < Pbj
< Pbj+1 < . . . < Pbd

More compactly,

Pbj < Pbj+1 , ∀j ∈ [1, . . . , d]

The following chain of inequalities is true ∀j ∈ [1, . . . , d].

Pbj
< Pbj+1

Φ−1(Pbj
) < Φ−1(Pbj+1)

( −L
Φ−1(Pbj+1)

)2

>

( −L
Φ−1(Pbj

)

)2

Vk+j+1|k > Vk+j|k

Lemma 3:
PR
ss � P̂R

ss

⇓
Vk+j+1|k > Vk+j|k, ∀j ∈ [1, . . . , d]

Proof:

PR
ss � P̂R

ss

PR
ss − P̂R

ss � 0
x>(PR

ss − P̂R
ss)x ≥ 0, ∀x ∈ Rn

x>(P̂R
ss + Q−PR

ss)x ≤ x>Qx, ∀x ∈ Rn

By using the steady-state version of Eqn. 13 and the discrete
algebraic Lyapunov equation we now have the following, ∀x ∈
Rn.

x>(P̂R
ss −AP̂R

ssA
>)x ≤ x>(PL

ss −APL
ssA

>)x
x>(P̂R

ss −PL
ss)x ≤ x>A(P̂R

ss −PL
ss)A

>x

Let x>
4
=CAj , ∀j ∈ [1, . . . , d], and add CPL

ssC
> + R

to both sides of the inequality above. It then follows that the
following relations hold true, ∀j ∈ [1, . . . , d].

CPk+j|kC> +R ≤ CPk+j+1|kC> +R

Vk+j+1|k > Vk+j|k

Lemma 4: R > 0⇒ PR
ss � P̂R

ss

Proof: It is true that

R > 0⇔ R−1 > 0

Under the condition that C ∈ R1×n, where n > 1, with no
rank condition on C, Lemma 5 can be used to support the
following implication:

R−1 > 0⇒ C>R−1C � 0

Also, given the matrix inversion lemma applied to Eqn. 20
shown below, the subsequent series of equations proves that
PR
ss � P̂R

ss.

P̂R
ss = PR

ss −PR
ssC

>(CPR
ssC

> +R)−1CPR
ss

M.I.L=
[
(PR

ss)
−1 + C>R−1C

]−1

∴ (P̂R
ss)
−1 = (PR

ss)
−1 + C>R−1C
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C>R−1C � 0
(P̂R

ss)
−1 − (PR

ss)
−1 � 0

(P̂R
ss)
−1 � (PR

ss)
−1

PR
ss � P̂R

ss

Lemma 5: Given L ∈ Rn×d, for which d > n and there
exists no rank condition on L: M � 0⇒ L>ML � 0

Proof:

M � 0
∴ x>Mx ≥ 0,∀x ∈ Rn

x
4
= Ly

Null(L)
4
= {y : Ly = 0}

dimNull(L) ≥ d− n > 0
∃y : Ly = 0

y>L>MLy ≥ 0,∀x ∈ Rn

L>ML � 0
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